3.5.71 \(\int \frac {x^2}{(d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [471]

3.5.71.1 Optimal result
3.5.71.2 Mathematica [A] (verified)
3.5.71.3 Rubi [A] (verified)
3.5.71.4 Maple [A] (verified)
3.5.71.5 Fricas [A] (verification not implemented)
3.5.71.6 Sympy [F]
3.5.71.7 Maxima [F(-2)]
3.5.71.8 Giac [A] (verification not implemented)
3.5.71.9 Mupad [F(-1)]

3.5.71.1 Optimal result

Integrand size = 40, antiderivative size = 195 \[ \int \frac {x^2}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d e^2}+\frac {2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^2 \left (c d^2-a e^2\right ) (d+e x)}-\frac {\left (3 c d^2+a e^2\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 c^{3/2} d^{3/2} e^{5/2}} \]

output
-1/2*(a*e^2+3*c*d^2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e 
^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(3/2)/d^(3/2)/e^(5/2)+(a 
*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/e^2+2*d^2*(a*d*e+(a*e^2+c*d^2)*x 
+c*d*e*x^2)^(1/2)/e^2/(-a*e^2+c*d^2)/(e*x+d)
 
3.5.71.2 Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.03 \[ \int \frac {x^2}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {c} \sqrt {d} \sqrt {e} \left (-a^2 e^3 (d+e x)+c^2 d^3 x (3 d+e x)+a c d e \left (3 d^2-e^2 x^2\right )\right )-\left (3 c^2 d^4-2 a c d^2 e^2-a^2 e^4\right ) \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{c^{3/2} d^{3/2} e^{5/2} \left (c d^2-a e^2\right ) \sqrt {(a e+c d x) (d+e x)}} \]

input
Integrate[x^2/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 
output
(Sqrt[c]*Sqrt[d]*Sqrt[e]*(-(a^2*e^3*(d + e*x)) + c^2*d^3*x*(3*d + e*x) + a 
*c*d*e*(3*d^2 - e^2*x^2)) - (3*c^2*d^4 - 2*a*c*d^2*e^2 - a^2*e^4)*Sqrt[a*e 
 + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[ 
d]*Sqrt[d + e*x])])/(c^(3/2)*d^(3/2)*e^(5/2)*(c*d^2 - a*e^2)*Sqrt[(a*e + c 
*d*x)*(d + e*x)])
 
3.5.71.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {1213, 1160, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{(d+e x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \, dx\)

\(\Big \downarrow \) 1213

\(\displaystyle \frac {2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^2 (d+e x) \left (c d^2-a e^2\right )}-\frac {\int \frac {d-e x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e^2}\)

\(\Big \downarrow \) 1160

\(\displaystyle \frac {2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^2 (d+e x) \left (c d^2-a e^2\right )}-\frac {\frac {1}{2} \left (\frac {a e^2}{c d}+3 d\right ) \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d}}{e^2}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^2 (d+e x) \left (c d^2-a e^2\right )}-\frac {\left (\frac {a e^2}{c d}+3 d\right ) \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d}}{e^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^2 (d+e x) \left (c d^2-a e^2\right )}-\frac {\frac {\left (\frac {a e^2}{c d}+3 d\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {c} \sqrt {d} \sqrt {e}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d}}{e^2}\)

input
Int[x^2/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 
output
(2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e^2*(c*d^2 - a*e^2)*( 
d + e*x)) - (-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(c*d)) + ((3*d 
+ (a*e^2)/(c*d))*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sq 
rt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[c]*Sqrt[d]*Sq 
rt[e]))/e^2
 

3.5.71.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1213
Int[(x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^ 
2)^(p_), x_Symbol] :> Simp[-2*(-d)^n*e^(2*m - n + 3)*(Sqrt[a + b*x + c*x^2] 
/((-2*c*d + b*e)^(m + 2)*(d + e*x))), x] - Simp[e^(2*m - n + 2)   Int[Expan 
dToSum[((-d)^n*(-2*c*d + b*e)^(-m - 1) - e^n*x^n*((-c)*d + b*e + c*e*x)^(-m 
 - 1))/(d + e*x), x]/Sqrt[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e} 
, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && IGtQ[n, 0] && EqQ[m 
+ p, -3/2]
 
3.5.71.4 Maple [A] (verified)

Time = 0.70 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.33

method result size
default \(\frac {\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}}{e}-\frac {d \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{e^{2} \sqrt {c d e}}-\frac {2 d^{2} \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{e^{3} \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\) \(259\)

input
int(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVE 
RBOSE)
 
output
1/e*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d 
/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c 
*d*e*x^2)^(1/2))/(c*d*e)^(1/2))-d/e^2*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c* 
d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-2*d^2/e^ 
3/(a*e^2-c*d^2)/(x+d/e)*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)
 
3.5.71.5 Fricas [A] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 586, normalized size of antiderivative = 3.01 \[ \int \frac {x^2}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [\frac {{\left (3 \, c^{2} d^{5} - 2 \, a c d^{3} e^{2} - a^{2} d e^{4} + {\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} x\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (3 \, c^{2} d^{4} e - a c d^{2} e^{3} + {\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{4 \, {\left (c^{3} d^{5} e^{3} - a c^{2} d^{3} e^{5} + {\left (c^{3} d^{4} e^{4} - a c^{2} d^{2} e^{6}\right )} x\right )}}, \frac {{\left (3 \, c^{2} d^{5} - 2 \, a c d^{3} e^{2} - a^{2} d e^{4} + {\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} x\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (3 \, c^{2} d^{4} e - a c d^{2} e^{3} + {\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{2 \, {\left (c^{3} d^{5} e^{3} - a c^{2} d^{3} e^{5} + {\left (c^{3} d^{4} e^{4} - a c^{2} d^{2} e^{6}\right )} x\right )}}\right ] \]

input
integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm 
="fricas")
 
output
[1/4*((3*c^2*d^5 - 2*a*c*d^3*e^2 - a^2*d*e^4 + (3*c^2*d^4*e - 2*a*c*d^2*e^ 
3 - a^2*e^5)*x)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^ 
2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c 
*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(3*c^2*d^4*e 
- a*c*d^2*e^3 + (c^2*d^3*e^2 - a*c*d*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d 
^2 + a*e^2)*x))/(c^3*d^5*e^3 - a*c^2*d^3*e^5 + (c^3*d^4*e^4 - a*c^2*d^2*e^ 
6)*x), 1/2*((3*c^2*d^5 - 2*a*c*d^3*e^2 - a^2*d*e^4 + (3*c^2*d^4*e - 2*a*c* 
d^2*e^3 - a^2*e^5)*x)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c* 
d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 
+ a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(3*c^2*d^4*e - a*c*d^2*e^3 
 + (c^2*d^3*e^2 - a*c*d*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x 
))/(c^3*d^5*e^3 - a*c^2*d^3*e^5 + (c^3*d^4*e^4 - a*c^2*d^2*e^6)*x)]
 
3.5.71.6 Sympy [F]

\[ \int \frac {x^2}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {x^{2}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \]

input
integrate(x**2/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)
 
output
Integral(x**2/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)
 
3.5.71.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm 
="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.5.71.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.93 \[ \int \frac {x^2}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \, d^{2}}{{\left ({\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} e + \sqrt {c d e} d\right )} e^{2}} + \frac {{\left (3 \, c d^{2} + a e^{2}\right )} \log \left ({\left | c d^{2} + a e^{2} + 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{2 \, \sqrt {c d e} c d e^{2}} + \frac {\sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{c d e^{2}} \]

input
integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm 
="giac")
 
output
2*d^2/(((sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*e + 
sqrt(c*d*e)*d)*e^2) + 1/2*(3*c*d^2 + a*e^2)*log(abs(c*d^2 + a*e^2 + 2*sqrt 
(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/(s 
qrt(c*d*e)*c*d*e^2) + sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)/(c*d*e^2 
)
 
3.5.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {x^2}{\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

input
int(x^2/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)
 
output
int(x^2/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)